An hp-adaptive Newton-Galerkin nite element procedure for semilinear boundary value problems
نویسندگان
چکیده
In this paper we develop an hp-adaptive procedure for the numerical solution of general, semilinear elliptic boundary value problems in 1d, with possible singular perturbations. Our approach combines both a prediction-type adaptive Newton method and an hp-version adaptive finite element discretization (based on a robust a posteriori residual analysis), thereby leading to a fully hp-adaptive Newton-Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for various examples.
منابع مشابه
Residual-based a posteriori error estimates for hp finite element solutions of semilinear Neumann boundary optimal control problems
In this paper, we investigate residual-based a posteriori error estimates for the hp finite element approximation of semilinear Neumann boundary elliptic optimal control problems. By using the hp finite element approximation for both the state and the co-state and the hp discontinuous Galerkin finite element approximation for the control, we derive a posteriori error bounds in L2-H1 norms for t...
متن کاملFully Adaptive Newton-Galerkin Methods for Semilinear Elliptic Partial Differential Equations
In this paper we develop an adaptive procedure for the numerical solution of general, semilinear elliptic problems with possible singular perturbations. Our approach combines both prediction-type adaptive Newton methods and a linear adaptive finite element discretization (based on a robust a posteriori error analysis), thereby leading to a fully adaptive Newton–Galerkin scheme. Numerical experi...
متن کاملhp-Version Discontinuous Galerkin Finite Element Method for Semilinear Parabolic Problems
We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...
متن کاملHp -version Discontinuous Galerkin Finite Element Methods for Semilinear Parabolic Problems
We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...
متن کاملEnergy Norm a Posteriori Error Estimation of Hp - Adaptive Discontinuous Galerkin Methods for Elliptic Problems
In this paper, we develop the a posteriori error estimation of hp-version interior penalty discontinuous Galerkin discretizations of elliptic boundary-value problems. Computable upper and lower bounds on the error measured in terms of a natural (mesh-dependent) energy norm are derived. The bounds are explicit in the local mesh sizes and approximation orders. A series of numerical experiments il...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016