An hp-adaptive Newton-Galerkin nite element procedure for semilinear boundary value problems

نویسندگان

  • M. Amrein
  • J. M. Melenk
  • T. P. Wihler
چکیده

In this paper we develop an hp-adaptive procedure for the numerical solution of general, semilinear elliptic boundary value problems in 1d, with possible singular perturbations. Our approach combines both a prediction-type adaptive Newton method and an hp-version adaptive finite element discretization (based on a robust a posteriori residual analysis), thereby leading to a fully hp-adaptive Newton-Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for various examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Residual-based a posteriori error estimates for hp finite element solutions of semilinear Neumann boundary optimal control problems

In this paper, we investigate residual-based a posteriori error estimates for the hp finite element approximation of semilinear Neumann boundary elliptic optimal control problems. By using the hp finite element approximation for both the state and the co-state and the hp discontinuous Galerkin finite element approximation for the control, we derive a posteriori error bounds in L2-H1 norms for t...

متن کامل

Fully Adaptive Newton-Galerkin Methods for Semilinear Elliptic Partial Differential Equations

In this paper we develop an adaptive procedure for the numerical solution of general, semilinear elliptic problems with possible singular perturbations. Our approach combines both prediction-type adaptive Newton methods and a linear adaptive finite element discretization (based on a robust a posteriori error analysis), thereby leading to a fully adaptive Newton–Galerkin scheme. Numerical experi...

متن کامل

hp-Version Discontinuous Galerkin Finite Element Method for Semilinear Parabolic Problems

We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...

متن کامل

Hp -version Discontinuous Galerkin Finite Element Methods for Semilinear Parabolic Problems

We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...

متن کامل

Energy Norm a Posteriori Error Estimation of Hp - Adaptive Discontinuous Galerkin Methods for Elliptic Problems

In this paper, we develop the a posteriori error estimation of hp-version interior penalty discontinuous Galerkin discretizations of elliptic boundary-value problems. Computable upper and lower bounds on the error measured in terms of a natural (mesh-dependent) energy norm are derived. The bounds are explicit in the local mesh sizes and approximation orders. A series of numerical experiments il...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016